ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÁ½¸ö½¹µãΪ${F_1}£¬{F_2}£¬|{{F_1}{F_2}}|=2\sqrt{2}$£¬µãA£¬BÔÚÍÖÔ²ÉÏ£¬F1ÔÚÏß¶ÎABÉÏ£¬ÇÒ¡÷ABF2µÄÖܳ¤µÈÓÚ$4\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÔ²O£ºx2+y2=4ÉÏÈÎÒâÒ»µãP×÷ÍÖÔ²CµÄÁ½ÌõÇÐÏßPMºÍPNÓëÔ²O½»ÓÚµãM£¬N£¬Çó¡÷PMNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÒÑÖªÇóµÃa£¬cµÄÖµ£¬ÔÙÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÉèP£¨xP£¬yP£©£¬Ôò${{x}_{P}}^{2}+{{y}_{P}}^{2}=4$£®ÈôÁ½ÌõÇÐÏßÖÐÓÐÒ»ÌõÇÐÏßµÄбÂʲ»´æÔÚ£¬Çó³öPµÄ×ø±ê£¬Ö±½ÓÇóµÃ¡÷PMNÃæ»ý£»ÈôÁ½ÌõÇÐÏßµÄбÂʾù´æÔÚ£¬Ôò${x}_{P}¡Ù¡À\sqrt{3}$£®
Éè¹ýµãPµÄÍÖÔ²µÄÇÐÏß·½³ÌΪy-yP=k£¨x-xP£©£¬´úÈëÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓÃÅбðʽµÈÓÚ0µÃµ½¹ØÓÚkµÄ·½³Ì£¬ÔÙÓɸùÓëϵÊýµÄ¹ØÏµ¿ÉµÃPM¡ÍPN£¬ÇóµÃ|MN|£¬Ð´³öÈý½ÇÐÎÃæ»ý£¬ÀûÓûù±¾²»µÈʽÇóµÃÃæ»ý×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉ¡÷ABF2µÄÖܳ¤µÈÓÚ$4\sqrt{3}$£¬¿ÉµÃ4a=4$\sqrt{3}$£¬a=$\sqrt{3}$£®
ÓÉ$|{F}_{1}{F}_{2}|=2\sqrt{2}$£¬µÃc=$\sqrt{2}$£¬¡àb2=a2-c2=1£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨2£©ÉèP£¨xP£¬yP£©£¬Ôò${{x}_{P}}^{2}+{{y}_{P}}^{2}=4$£®
¢ÙÈôÁ½ÌõÇÐÏßÖÐÓÐÒ»ÌõÇÐÏßµÄбÂʲ»´æÔÚ£¬Ôò${x}_{P}=¡À\sqrt{3}$£¬yP=¡À1£®
ÁíÒ»ÌõÇÐÏßµÄбÂÊΪ0£¬´Ó¶øPM¡ÍPN£¬´Ëʱ${S}_{¡÷PMN}=\frac{1}{2}|PM|•|PN|=\frac{1}{2}¡Á2¡Á2\sqrt{3}=2\sqrt{3}$£®
¢ÚÈôÁ½ÌõÇÐÏßµÄбÂʾù´æÔÚ£¬Ôò${x}_{P}¡Ù¡À\sqrt{3}$£®
Éè¹ýµãPµÄÍÖÔ²µÄÇÐÏß·½³ÌΪy-yP=k£¨x-xP£©£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y²¢ÕûÀíµÃ£º
£¨1+3k2£©x2+6k£¨yP-kxP£©x$+3£¨{y}_{P}-k{x}_{P}£©^{2}-3=0$£®
ÒÀÌâÒâµÃ¡÷=0£¬¼´$£¨3-{{x}_{P}}^{2}£©{k}^{2}+2{x}_{P}{y}_{P}k+1-{{y}_{p}}^{2}=0$£®
ÉèÇÐÏßPM¡¢PNµÄбÂÊ·Ö±ðΪk1£¬k2£¬´Ó¶ø${k}_{1}{k}_{2}=\frac{1-{{y}_{P}}^{2}}{3-{{x}_{P}}^{2}}=\frac{{{x}_{P}}^{2}-3}{3-{{x}_{P}}^{2}}=-1$£®
¡àPM¡ÍPN£¬ÔòÏß¶ÎMNΪԲOµÄÖ±¾¶£¬|MN|=4£®
¡à${S}_{¡÷PMN}=\frac{1}{2}|PM|•|PN|¡Ü\frac{1}{4}£¨|PM{|}^{2}+|PN{|}^{2}£©$=$\frac{1}{4}|MN{|}^{2}=4$£®
µ±ÇÒ½öµ±|PM|=|PN|=2$\sqrt{2}$ʱ£¬¡÷PMNÈ¡×î´óÖµ4£®
×ÛÉÏ£¬¡÷PMNÃæ»ýµÄ×î´óֵΪ4£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø