题目内容
9.已知函数f(x)=$\left\{\begin{array}{l}{sin(x+a),x≤0}\\{cos(x+b),x>0}\end{array}\right.$是偶函数,则下列结论可能成立的是( )| A. | a=$\frac{π}{4}$,b=-$\frac{π}{4}$ | B. | a=$\frac{2π}{3}$,b=$\frac{π}{6}$ | C. | a=$\frac{π}{3}$,b=$\frac{π}{6}$ | D. | a=$\frac{5π}{6}$,b=$\frac{2π}{3}$ |
分析 利用函数的奇偶性以及三角函数的诱导公式化简,然后回代验证求解即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{sin(x+a),x≤0}\\{cos(x+b),x>0}\end{array}\right.$是偶函数,x=0时,sina=cosb,…①
可得sin(x+a)=cos(-x+b)=sin(x+$\frac{π}{2}$-b),…②,
当a=$\frac{π}{4}$,b=-$\frac{π}{4}$,满足①,不满足②,A不成立.
a=$\frac{2π}{3}$,b=$\frac{π}{6}$,满足①,不满足②,B不正确.
a=$\frac{π}{3}$,b=$\frac{π}{6}$,满足①,满足②,所以C正确.
a=$\frac{5π}{6}$,b=$\frac{2π}{3}$,不满足①,所以不正确.
故选:C.
点评 本题考查函数的奇偶性以及三角函数的化简求值,考查计算能力.
练习册系列答案
相关题目
19.已知全集U=R,函数y=ln(x-1)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是( )
| A. | M∩N=N | B. | M∩(∁UN)=∅ | C. | M∪N=U | D. | M⊆(∁UN) |
20.已知数列{an}是公比为2的等比数列,且4a1为am,an的等比中项,则$\frac{1}{m}+\frac{4}{n}$的最小值为( )
| A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{25}{6}$ | D. | 不存在 |
18.下列说法正确的是( )
| A. | 函数y=2x2-x+1在(0,+∞)上是增函数 | |
| B. | 幂函数在(0,+∞)上都是增函数 | |
| C. | 函数y=log2(x+$\sqrt{{x}^{2}+1}$)既不是奇函数,也不是偶函数 | |
| D. | 已知f(x)是定义在R上的增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b) |
1.为了增强环保意识,某校从男生中随机制取了60人,从女生中随机制取了50人参加环保知识测试,统计数据如表所示,经计算K2=7.822,则环保知识是否优秀与性别有关的把握为( )
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$
| 优秀 | 非优秀 | 总计 | |
| 男生 | 40 | 20 | 60 |
| 女生 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |