ÌâÄ¿ÄÚÈÝ

8£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßC1Éϵĵ㵽ÇúÏßC2µÄ¾àÀëµÄ×îСֵ£»
£¨2£©°ÑÇúÏßC1Éϵĸ÷µãµÄºá×ø±êÀ©´óΪԭÀ´µÄ2±¶£¬×Ý×ø±êÀ©´óÔ­À´µÄ$\sqrt{3}$±¶£¬µÃµ½ÇúÏßC1¡ä£¬ÉèP£¨-1£¬1£©£¬ÇúÏßC2ÓëC1¡ä½»ÓÚA£¬BÁ½µã£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ýº¯ÊýµÄ¼«×ø±ê·½³ÌÇó³öº¯ÊýµÄÆÕͨ·½³Ì¼´¿É£¬¸ù¾Ý²ÎÊý·½³ÌÏûÈ¥²ÎÊýÇó³öC2µÄÆÕͨ·½³Ì¼´¿É£¬Çó³öµãµ½Ö±ÏߵľàÀë¼´¿É£»
£¨2£©Çó³ö${{C}_{1}}^{¡ä}$µÄ·½³Ì£¬ÁªÁ¢·½³Ì×飬Çó³ö|PA|+|PB|µÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¬
¹ÊC1Ϊ£ºx2+y2=1£¬Ô²ÐÄÊÇ£¨0£¬0£©°ë¾¶ÊÇ1£¬
ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£¬
¹ÊC2£ºy=x+2£¬
Ô²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|2|}{\sqrt{2}}$=$\sqrt{2}$£¬
¹ÊC1Éϵĵ㵽C2µÄ×îС¾àÀëÊÇ$\sqrt{2}$-1£»
£¨2£©ÉìËõ±ä»»Îª$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=\sqrt{3}y}\end{array}\right.$£¬
¹Ê${{C}_{1}}^{¡ä}$£º$\frac{{{x}^{¡ä}}^{2}}{4}$+$\frac{{{y}^{¡ä}}^{2}}{3}$=1£¬
½«C2ºÍ${{C}_{1}}^{¡ä}$ÁªÁ¢£¬µÃ7t2+2$\sqrt{2}$t-10=0£¬
¡ßt1t2£¼0£¬
¡à|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\frac{12\sqrt{2}}{7}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì¡¢¼«×ø±ê·½³ÌÒÔ¼°ÆÕͨ·½³ÌµÄÖµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽÒÔ¼°×ø±êµÄÉìËõ±ä»»£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø