题目内容
13.已知异面直线a与b所成的角为θ;向量$\overrightarrow{m}$和$\overrightarrow{n}$所在直线分别平行于a和b,则恒有( )| A. | cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$ | B. | cos(π-θ)=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$ | C. | |cosθ|=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$ | D. | cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$ |
分析 利用向量的夹角公式计算即可,明确异面直线的所成的角与直线的方向向量夹角的关系.
解答 解:异面直线a与b所成的角为θ;向量$\overrightarrow{m}$和$\overrightarrow{n}$所在直线分别平行于a和b,则向量$\overrightarrow{m}$和$\overrightarrow{n}$的夹角为θ或π-θ,
所以cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$;
故选:D.
点评 本题考查了空间角的异面直线所成的角;理解向量的夹角公式及异面直线的夹角范围是解题的关键.
练习册系列答案
相关题目
18.已知函数f(x)=ex,g(x)=ax+b,若对于任意的x都有f(x)≥g(x),则ab的最大值为( )
| A. | e | B. | $\frac{e}{3}$ | C. | $\frac{e}{2}$ | D. | $\frac{\sqrt{2}e}{2}$ |
16.已知函数f(x)=xln(e2x+1)-x2+1,f(a)=2,则f(-a)的值为( )
| A. | 1 | B. | 0 | C. | -1 | D. | -2 |