题目内容

17.已知m为实数,i为虚数单位,若m+(m2-1)i>0,则$\frac{m+i}{1-i}$=(  )
A.-1B.1C.-iD.i

分析 由m+(m2-1)i>0,得$\left\{\begin{array}{l}{m>0}\\{{m}^{2}-1=0}\end{array}\right.$,求解得到m的值,然后代入$\frac{m+i}{1-i}$,再由复数代数形式的乘除运算化简得答案.

解答 解:∵m+(m2-1)i>0,
∴$\left\{\begin{array}{l}{m>0}\\{{m}^{2}-1=0}\end{array}\right.$,解得:m=1.
则$\frac{m+i}{1-i}$=$\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网