题目内容
5.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是$p=\left\{\begin{array}{l}t+20,0<t<25,t∈N\\-t+100,25≤t≤30,t∈N\end{array}\right.$,该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N).(1)求这种商品的日销售金额的解析式;
(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天的第几天?
分析 (1)在解答时,应充分考虑自变量的范围不同销售的价格表达形式不同,分情况讨论即可获得日销售金额y关于时间t的函数关系式;
(2)根据分段函数不同段上的表达式,分别求最大值最终取较大者分析即可获得问题解答.
解答 解:(1)由题意可知:y=$\left\{\begin{array}{l}{(t+20)(-t+40),(0<t<25,t∈{N}_{+})}\\{(-t+100)(-t+40),(25≤t≤30,t∈{N}_{+})}\end{array}\right.$.
(2)当0<t<25,t∈N+时,y=(t+20)(-t+40)=-t2+20t+800=-(t-10)2+900.
∴t=10(天)时,ymax=900(元),
当25≤t≤30,t∈N+时,y=(-t+100)(-t+40)=t2-140t+4000=(t-70)2-900,
而y=(t-70)2-900,在t∈[25,30]时,函数递减.
∴t=25(天)时,ymax=1125(元).
∵1125>900,∴ymax=1125(元).
故所求日销售金额的最大值为1125元,且在最近30天中的第25天日销售额最大.
点评 本题考查的是分段函数应用类问题.在解答的过程当中充分体现了分类讨论的思想、二次函数球最值得方法以及问题转化的能力.值得同学们体会反思.
练习册系列答案
相关题目
17.已知m为实数,i为虚数单位,若m+(m2-1)i>0,则$\frac{m+i}{1-i}$=( )
| A. | -1 | B. | 1 | C. | -i | D. | i |