题目内容
f(n)=1+
+
+…+
,则f(n+1)-f(n)= .
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
考点:函数的值
专题:函数的性质及应用
分析:利用函数的性质求解.
解答:
解:∵f(n)=1+
+
+…+
,
∴f(n+1)-f(n)
=(1+
+
+…+
+
+
+
)-(1+
+
+…+
)
=
+
+
.
故答案为:
+
+
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
∴f(n+1)-f(n)
=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
=
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
故答案为:
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
点评:本题考查函数值的求法,解题时要认真审题,是基础题.
练习册系列答案
相关题目