题目内容
14.在一次共有15000名考生的某市高二的联考中,这些学生的数学成绩ξ服从正态分布 N(100,δ2),且p(80<ξ≤100)=0.35.若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上的试卷中抽取( )| A. | 20份 | B. | 15份 | C. | 10份 | D. | 5份 |
分析 由题意结合正态分布曲线可得120分以上的概率,乘以100可得.
解答 解:∵数学成绩ξ服从正态分布N(100,σ2),P(80<ξ≤100)=0.35,
∴P(80<ξ≤120)=2×0.35=0.70,
∴P(ξ>120)=$\frac{1}{2}$(1-0.70)=0.15,
∴100×0.15=15,
故选:B.
点评 本题考查样本中120分以上的试卷份数的求法,考查分层抽样、正态分布曲线等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.
练习册系列答案
相关题目
15.在平行四边形ABCD中,E、F分别是边CD和BC的中点,若$\overrightarrow{AC}=λ\overrightarrow{AE}+μ\overrightarrow{AF,}$其中λ,μ∈R,则λ+μ=( )
| A. | $\frac{1}{3}$ | B. | 2 | C. | $\frac{4}{3}$ | D. | 1 |
5.
一个几何体的三视图如图所示,则这个几何体的体积为( )
| A. | $\frac{\sqrt{3}}{6}$(8+π) | B. | $\frac{\sqrt{3}}{6}$(9+2π) | C. | $\frac{\sqrt{3}}{6}$(8+2π) | D. | $\frac{\sqrt{3}}{6}$(6+π) |
2.某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩列表如下
规定:综合成绩不低于90分者为优秀,低于90分为不优秀
(1)在序号1,2,3,4,5,6这6个学生中随机选两名,求这两名学生数学和物理都优秀的概率
(2)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学学期综合成绩 | 96 | 92 | 91 | 91 | 81 | 76 | 82 | 79 | 90 | 93 |
| 物理学期综合成绩 | 91 | 91 | 90 | 92 | 90 | 78 | 91 | 71 | 78 | 84 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学学期综合成绩 | 68 | 72 | 79 | 70 | 64 | 61 | 63 | 66 | 53 | 59 |
| 物理学期综合成绩 | 79 | 78 | 62 | 72 | 62 | 60 | 68 | 72 | 56 | 54 |
(1)在序号1,2,3,4,5,6这6个学生中随机选两名,求这两名学生数学和物理都优秀的概率
(2)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
19.已知O为坐标原点,F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM与y轴交点为N,且$\overrightarrow{EO}=3\overrightarrow{NO}$,则C的离心率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
3.设i是虚数单位,则复数z=$\frac{i-3}{1+i}$的实部为( )
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |