题目内容
2.已知实数x,y满足$\left\{\begin{array}{l}x+y≥3\\ x-y≤2\\ y≤2.\end{array}\right.$那么z=2x+y的最小值为( )| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论..
解答 解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,![]()
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最小,
此时z最小,
由$\left\{\begin{array}{l}{y=2}\\{x+y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即A(1,2),此时z=1×2+2=4,
故选:C.
点评 本题主要考查线性规划的计算,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
12.已知{an}是等差数列,满足a1=1,a4=-5,数列{bn}满足b1=1,b4=21,且{an+bn}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Sn.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Sn.
10.已知动直线y=k(x+1)与椭圆C:x2+3y2=5相交于A、B两点,已知点$M(-\frac{7}{3},0)$,则$\overrightarrow{MA}•\overrightarrow{MB}$的值是( )
| A. | $-\frac{9}{4}$ | B. | $\frac{9}{4}$ | C. | $-\frac{4}{9}$ | D. | $\frac{4}{9}$ |
14.已知x,y∈R,且x>y>0,则( )
| A. | tanx-tany>0 | B. | xsinx-ysiny>0 | C. | lnx+lny>0 | D. | 2x-2y>0 |
11.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
12.设a=3e,b=πe,c=π3,其中e=2.71828…为自然对数的底数,则a,b,c的大小关系是( )
| A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | c>b>a |