题目内容

13.若集合A={x|x2-4x<0},B={y|y=2x-5,x∈A},则A∩B等于(  )
A.B.(0,3)C.(-5,4)D.(0,4)

分析 求出A中不等式的解集确定出A,进而求出B中y的范围确定出B,找出两集合的交集即可.

解答 解:由A中不等式变形得:x(x-4)<0,
解得:0<x<4,即A=(0,4),
由y=2x-5,得到x=$\frac{y+5}{2}$,
代入得:0<$\frac{y+5}{2}$<4,即-5<y<3,
∴B=(-5,3),
则A∩B=(0,3),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网