题目内容
13.设(a,b)是函数f(x)的单调递增区间,若x1、x2∈(a,b)且x1<x2,则f(x1)与f(x2)的大小关系为( )| A. | f(x1)<f(x2) | B. | f(x1)=f(x2) | C. | f(x1)>f(x2) | D. | 不能确定 |
分析 直接利用函数的单调性写出结果即可.
解答 解:设(a,b)是函数f(x)的单调递增区间,若x1、x2∈(a,b)且x1<x2,则f(x1)与f(x2)的大小关系为:f(x1)<f(x2).
故选:A.
点评 本题考查函数的单调性的应用,是基础题.
练习册系列答案
相关题目
3.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
| 时间x | 1 | 2 | 3 | 4 | 5 |
| 命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
1.已知变量x,y满足线性约束条件$\left\{\begin{array}{l}{y≥a(x-3)}\\{x+y≤3}\\{x≥1}\end{array}\right.$其中a>0,当z=2x+y的最小值为1时,a等于( )
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
2.等比数列{an}的前n项和为Sn,若a2=3,S3=13,则log3a3的值为( )
| A. | 0 | B. | 2 | C. | 0或2 | D. | 1或2 |