题目内容
9.抛物线的准线方程是y=-1,则抛物线的标准方程是x2=4y.分析 根据准线方程为y=-1,可知抛物线的焦点在y轴的正半轴,再设抛物线的标准形式为x2=2py,根据准线方程求出p的值,代入即可得到答案.
解答 解:由题意可知抛物线的焦点在y轴的正半轴,
设抛物线标准方程为:x2=2py(p>0),
∵抛物线的准线方程为y=-1,
∴$\frac{p}{2}$=1,
∴p=2,
∴抛物线的标准方程为:x2=4y.
故答案为:x2=4y.
点评 本题主要考查抛物线的标准方程、抛物线的简单性质.属基础题.
练习册系列答案
相关题目
17.已知抛物线x2=8y的焦点为F,在抛物线内有一点A(4,4),若该抛物线上存在一动点P,则|PA|+|PF|的最小值为( )
| A. | $4\sqrt{2}+2$ | B. | 4 | C. | $2\sqrt{5}$ | D. | 6 |
4.已知三棱锥P-ABC的所有顶点都在半径为1的球O的球面上,△ABC是边长为1的正三角形,PC为球O的直径,则该三棱锥的底面ABC上的高为( )
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{5}}{3}$ | D. | $\frac{2\sqrt{6}}{3}$ |