题目内容
求函数f(x)=x3-12x在区间[-3,3]上的单调区间、极值与最大值、最小值.
考点:利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)先对函数f(x)求导数f'(x),然后根据导数f'(x)的零点得出导数大于零和导数小于零的区间,导数大于零的区间是函数的增区间,而导数小于零的区间是函数的减区间,从而得到极值与最大值、最小值.
解答:
解:∵f'(x)=3x2-12=3(x-2)(x+2),
由f'(x)<0,得x∈(-2,2),∴x∈(-2,2)时,函数为减函数;
同理x∈(-∞,-2)或x∈(2,+∞)时,函数为增函数.
综上所述,函数的增区间为(-3,-2)、(2,3);减区间为(-2,2)
x=-2时,f(x)极大值=f(-2)=16,x=2时,f(x)极小值=f(2)=-16
f(x)max=f(x)极大值=f(-2)=16,f(x)min=f(x)极小值=f(2)=-16.
由f'(x)<0,得x∈(-2,2),∴x∈(-2,2)时,函数为减函数;
同理x∈(-∞,-2)或x∈(2,+∞)时,函数为增函数.
综上所述,函数的增区间为(-3,-2)、(2,3);减区间为(-2,2)
x=-2时,f(x)极大值=f(-2)=16,x=2时,f(x)极小值=f(2)=-16
f(x)max=f(x)极大值=f(-2)=16,f(x)min=f(x)极小值=f(2)=-16.
点评:本题着重考查了利用导数研究函数的单调性、利用导数求闭区间上函数的最值等等知识点,属于中档题.
练习册系列答案
相关题目