题目内容
已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为( )
A、-
| ||
| B、0 | ||
| C、1 | ||
D、
|
考点:基本不等式
专题:三角函数的求值
分析:由a2+b2=1,可设a=cosθ,b=sinθ,θ∈[0,2π).利用倍角公式、同角三角函数基本关系式、二次函数的单调性即可得出.
解答:
解:∵a2+b2=1,∴可设a=cosθ,b=sinθ,θ∈[0,2π).
∴a4+ab+b4=cos4θ+cosθsinθ+sin4θ=(cos2θ+sin2θ)2-2sin2θcos2θ+cosθsinθ
=-
sin22θ+
sin2θ+1
=-
(sin2θ-
)2+
,
当sin2θ=-1时,上式取得最小值为0.
故选:B.
∴a4+ab+b4=cos4θ+cosθsinθ+sin4θ=(cos2θ+sin2θ)2-2sin2θcos2θ+cosθsinθ
=-
| 1 |
| 2 |
| 1 |
| 2 |
=-
| 1 |
| 2 |
| 1 |
| 2 |
| 9 |
| 8 |
当sin2θ=-1时,上式取得最小值为0.
故选:B.
点评:本题考查了倍角公式、同角三角函数基本关系式、二次函数的单调性,考查了转化方法,属于中档题.
练习册系列答案
相关题目
从0~9这10个数中,选出3个数作为函数f(x)=ax2+bx+c各项系数,则可以组成不同的二次函数( )个.
| A、900 | B、1000 |
| C、648 | D、720 |
已知各项均不为零的数列{an},定义向量
=(an,an+1),
=(n,n+1),n∈N*.下列命题中真命题是( )
| cn |
| bn |
A、若?n∈N*总有
| ||||||||||||
B、若?n∈N*总有
| ||||||||||||
C、若
| ||||||||||||
D、若?n∈N*总有
|
用min{a,b}表示a,b两个实数中的最小值.已知函数f(x)=min{|log3x|,|log3(x-t)|}(t>0),若函数g(x)=f(x)-1至少有3个零点,则t的最小值为( )
A、
| ||
| B、1 | ||
C、
| ||
D、
|
若a<b<0,则有( )
A、
| ||||
B、0<
| ||||
| C、b2>a2 | ||||
| D、|a|>-b |
记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人不相邻且不排在两端,不同的排法共有( )
| A、720种 | B、960种 |
| C、1440种 | D、480种 |
将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有两个房间无人选择且这两个房间不相邻的安排方式的总数为( )
| A、900 | B、1500 |
| C、1800 | D、1440 |