ÌâÄ¿ÄÚÈÝ
19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬½Ç¦ÈÂú×ã$sin\frac{¦È}{2}=-\frac{{\sqrt{10}}}{10}£¬cos\frac{¦È}{2}=\frac{{3\sqrt{10}}}{10}£¬\overrightarrow{OA}=£¨{12£¬5}£©$£¬ÉèµãBÊǽǦÈÖÕ±ßÉϵÄÒ»¸ö¶¯µã£¬Ôò$|{\overrightarrow{OA}-\overrightarrow{OB}}|$µÄ×îСֵΪ$\frac{56}{5}$£®·ÖÎö Çó³ösin¦È£¬cos¦È£¬ÉèOB=a£¬µÃ³öBµã×ø±ê£¬´Ó¶ø¿ÉµÃ|$\overrightarrow{OA}-\overrightarrow{OB}$|¹ØÓÚaµÄ±í´ïʽ£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³ö×îСֵ£®
½â´ð ½â£º·½·¨1£ºsin¦È=2sin$\frac{¦È}{2}$cos$\frac{¦È}{2}$=-$\frac{3}{5}$£¬cos¦È=cos2$\frac{¦È}{2}$-sin2$\frac{¦È}{2}$=$\frac{4}{5}$£¬
ÉèOB=a£¬ÔòB£¨$\frac{4}{5}$a£¬-$\frac{3}{5}$a£©£¬
¡à$\overrightarrow{OA}-\overrightarrow{OB}$=£¨12-$\frac{4a}{5}$£¬5+$\frac{3a}{5}$£©£¬
¡à|$\overrightarrow{OA}-\overrightarrow{OB}$|=$\sqrt{£¨12-\frac{4a}{5}£©^{2}+£¨5+\frac{3a}{5}£©^{2}}$=$\sqrt{{a}^{2}-\frac{66}{5}a+169}$=$\sqrt{£¨a-\frac{33}{5}£©^{2}+\frac{3136}{25}}$£¬
¡àµ±a=$\frac{33}{5}$ʱ£¬|$\overrightarrow{OA}-\overrightarrow{OB}$|È¡µÃ×îСֵ$\sqrt{\frac{3136}{25}}$=$\frac{56}{5}$£®
·½·¨2£ºÓÉ·½·¨1¿ÉÖªBµãÔÚÉäÏß3x+4y=0£¨x£¾0£©£¬
¡à$|{\overrightarrow{OA}-\overrightarrow{OB}}|$µÄ×îСֵΪAµ½ÉäÏß3x+4y=0£¨x£¾0£©µÄ¾àÀëd=$\frac{36+20}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{56}{5}$£®
¹Ê´ð°¸Îª£º$\frac{56}{5}$£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÄ£³¤¼ÆË㣬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{{\sqrt{5}}}{5}$ | B£® | $\frac{{\sqrt{10}}}{5}$ | C£® | $\frac{{\sqrt{15}}}{5}$ | D£® | $\frac{{\sqrt{3}}}{5}$ |