题目内容

2.若cosα=$\frac{1}{5}$,α∈(0,$\frac{π}{2}$),则cos(α-$\frac{π}{3}$)=$\frac{1+6\sqrt{2}}{10}$.

分析 利用同角三角函数的基本关系式求出正弦函数值,然后利用两角差的余弦函数求解即可.

解答 解:cosα=$\frac{1}{5}$,α∈(0,$\frac{π}{2}$),则sinα=$\sqrt{1-{cos}^{2}α}$=$\frac{2\sqrt{6}}{5}$,
cos(α-$\frac{π}{3}$)=cosαcos$\frac{π}{3}$+sinαsin$\frac{π}{3}$=$\frac{1}{5}×\frac{1}{2}+\frac{2\sqrt{6}}{5}×\frac{\sqrt{3}}{2}$=$\frac{1+6\sqrt{2}}{10}$.
故答案为:$\frac{1+6\sqrt{2}}{10}$.

点评 本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网