题目内容
若直线y=kx+2与双曲线x2-y2=6的左支交于不同的两点,那么k的取值范围是( )
分析:根据直线y=kx+2与双曲线x2-y2=6的左支交于不同的两点,可得直线与双曲线联立方程有两个不等的负根,进而构造关于k的不等式组,解不等式可得答案.
解答:解:联立方程
得
(1-k2)x2-4kx-10=0…①
若直线y=kx+2与双曲线x2-y2=6的左支交于不同的两点,
则方程①有两个不等的负根
∴
解得:k∈(1,
)
故选D
|
(1-k2)x2-4kx-10=0…①
若直线y=kx+2与双曲线x2-y2=6的左支交于不同的两点,
则方程①有两个不等的负根
∴
|
解得:k∈(1,
| ||
| 3 |
故选D
点评:本题考查的知识点圆锥曲线中的范围问题,其中分析出题目的含义是直线与双曲线联立方程有两个不等的负根,是解答的关键.
练习册系列答案
相关题目
若直线y=kx+2与双曲线x2-y2=6只有一个交点,那么实数k的值是( )
A、
| ||||
B、±
| ||||
| C、±1 | ||||
D、±
|