ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±Ïßy=kx+2ÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÇÒÒÔMNΪֱ¾¶µÄԲǡºÃ¹ýԵ㣬ÇóʵÊýkµÄȡֵ£»
£¨3£©¶¯µãPʹµÃ
| F1P |
| F1F2 |
| PF1 |
| PF2 |
| F2F |
| F2P |
| PF1 |
| PF2 |
·ÖÎö£º£¨1£©ÔÚRT¡÷BOF2ÖУ¬¡ÏBF2O=60¡ã£¬¼ÆËãµÃ£ºb=
c£¬a=2c£¬ÓÉS¡÷ABF2=
((a-c)b=
£¬¿É¼ÆËãµÃa=2£¬b=
£¬c=1£¬´Ó¶ø¿ÉÇóÍÖÔ²±ê×¼·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+2£®ÓëÍÖÔ²·½³ÌÁªÁ¢£¬¸ù¾ÝÅбðʽ´óÓÚ0ÇóµÃkµÄ·¶Î§£¬ÉèM£¬NÁ½µã×ø±ê·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®¸ù¾ÝΤ´ï¶¨ÀíÇóµÃx1+x2ºÍx1x2£¬½ø¶ø¸ù¾ÝÈôÒÔMNΪֱ¾¶µÄԲǡºÃ¹ýԵ㣬x1•x2+y1•y2=0£¬´úÈë¼´¿ÉÇóµÃk£¬×îºó¼ìÑé¿´ÊÇ·ñ·ûºÏÌâÒ⣮
£¨3£©ÉèPµÄ×ø±ê£¬ÓÉ
•
¡¢
•
¡¢
1•
³É¹«²îСÓÚÁãµÄµÈ²îÊýÁеãºx2+y2=33¡Ýx2£¾0
´Ó¶ø
£¼cos¦È¡Ü1£¬ËùÒÔ¿ÉÇó¦ÈµÄȡֵ·¶Î§£®£®
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+2£®ÓëÍÖÔ²·½³ÌÁªÁ¢£¬¸ù¾ÝÅбðʽ´óÓÚ0ÇóµÃkµÄ·¶Î§£¬ÉèM£¬NÁ½µã×ø±ê·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®¸ù¾ÝΤ´ï¶¨ÀíÇóµÃx1+x2ºÍx1x2£¬½ø¶ø¸ù¾ÝÈôÒÔMNΪֱ¾¶µÄԲǡºÃ¹ýԵ㣬x1•x2+y1•y2=0£¬´úÈë¼´¿ÉÇóµÃk£¬×îºó¼ìÑé¿´ÊÇ·ñ·ûºÏÌâÒ⣮
£¨3£©ÉèPµÄ×ø±ê£¬ÓÉ
| F1P |
| F1F2 |
| PF1 |
| PF2 |
| F2F |
| F2P |
´Ó¶ø
| 1 |
| 2 |
½â´ð£º½â£º£¨1£©ÔÚRT¡÷BOF2ÖУ¬¡ÏBF2O=60¡ã£¬¼ÆËãµÃ£ºb=
c£¬a=2c
ÓÉS¡÷ABF2=
((a-c)b=
£¬¼ÆËãµÃa=2£¬b=
£¬c=1£¬ËùÒÔÍÖÔ²±ê×¼·½³ÌΪ
+
=1£®
£¨2£©Éè½»µãM¡¢N×ø±êΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
½«Ö±Ïßy=kx+2´úÈëÍÖÔ²
+
=1ÕûÀíµÃ·½³Ì£¬3+4k2£©x2+16kx+4=0£»
ÓÉ¡÷£¾0µÃk£¼-
»òk£¾
ÓÉMNΪֱ¾¶µÄÔ²¹ýÔµãµÃx1•x2+y1•y2=0£¬ËùÒÔx1•x2+£¨kx1+2£©£¨kx2+2£©=0£¬¼ÆËã²¢¼ìÑéµÃk=¡À
¼´ÎªËùÇó£®
£¨3£©ÉèP£¨x£¬y£©£¬ÓÉ
•
¡¢
•
¡¢
1•
³É¹«²îСÓÚÁãµÄµÈ²îÊýÁеãºx2+y2=33¡Ýx2£¾0cos¦Á=
=
ËùÒÔ
£¼cos¦È¡Ü1£¬ËùÒÔ
£¾¦È¡Ý0£®
| 3 |
ÓÉS¡÷ABF2=
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©Éè½»µãM¡¢N×ø±êΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
½«Ö±Ïßy=kx+2´úÈëÍÖÔ²
| x2 |
| 4 |
| y2 |
| 3 |
|
ÓÉ¡÷£¾0µÃk£¼-
| 1 |
| 2 |
| 1 |
| 2 |
ÓÉMNΪֱ¾¶µÄÔ²¹ýÔµãµÃx1•x2+y1•y2=0£¬ËùÒÔx1•x2+£¨kx1+2£©£¨kx2+2£©=0£¬¼ÆËã²¢¼ìÑéµÃk=¡À
2
| ||
| 3 |
£¨3£©ÉèP£¨x£¬y£©£¬ÓÉ
| F1P |
| F1F2 |
| PF1 |
| PF2 |
| F2F |
| F2P |
| ||||
|
| 1 | ||
|
ËùÒÔ
| 1 |
| 2 |
| ¦Ð |
| 3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³ÌµÄÇó½â£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿