题目内容

19.已知数列{an}的首项为2,且数列{an}满足${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,设数列{an}的前n项和为Sn,则S2017=(  )
A.-586B.-588C.-590D.-504

分析 a1=2,${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$⇒${a}_{2}=\frac{{a}_{1}-1}{{a}_{1}+1}=\frac{1}{3}$,${a}_{3}=\frac{{a}_{2}-1}{{a}_{2}+1}=-\frac{1}{2}$,${a}_{4}=\frac{{a}_{3}-1}{{a}_{3}+1}=-3$,${a}_{5}=\frac{{a}_{4}-1}{{a}_{4}+1}=2$…可得数列{an}是周期为4的周期数列,即可求解.

解答 解:∵a1=2,${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,∴${a}_{2}=\frac{{a}_{1}-1}{{a}_{1}+1}=\frac{1}{3}$,${a}_{3}=\frac{{a}_{2}-1}{{a}_{2}+1}=-\frac{1}{2}$,${a}_{4}=\frac{{a}_{3}-1}{{a}_{3}+1}=-3$,
${a}_{5}=\frac{{a}_{4}-1}{{a}_{4}+1}=2$…可得数列{an}是周期为4的周期数列.
S2017=$504×(2+\frac{1}{3}-\frac{1}{2}-3)+2=-586$,
故选:A.

点评 本题考查了数列的递推式,考查了归纳推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网