题目内容
在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是 .
考点:直线与圆相交的性质
专题:直线与圆
分析:化圆C的方程为(x-4)2+y2=1,求出圆心与半径,由题意,只需(x-4)2+y2=4与直线y=kx+2有公共点即可.
解答:
解:圆C的方程为x2+y2-8x+15=0即 圆C的方程为(x-4)2+y2 =1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x-4)2+y2=4与直线y=kx+2有公共点即可.
设圆心C(4,0)到直线y=kx+2的距离为d,则d=
≤2,即3k2≤-4k,
求得-
≤k≤0,故k的最小值是-
,
故答案为:-
.
又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x-4)2+y2=4与直线y=kx+2有公共点即可.
设圆心C(4,0)到直线y=kx+2的距离为d,则d=
| |4k+2| | ||
|
求得-
| 4 |
| 3 |
| 4 |
| 3 |
故答案为:-
| 4 |
| 3 |
点评:本题考查直线与圆的位置关系,将条件转化为“(x-4)2+y2=4与直线y=kx+2有公共点”是关键,考查学生灵活解决问题的能力,体现了转化的数学思想,是中档题.
练习册系列答案
相关题目
已知曲线y=
在点M(π,0)处的切线为l,若θ为l的倾斜角,则点P(sinθ,cosθ)在( )
| sinx |
| x |
| A、第四象限 | B、第三象限 |
| C、第二象限 | D、第一象限 |