题目内容
(2015•河南二模)设a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.
已知函数,若存在实数,,,,满足,且,则的取值范围是 .
双曲线的离心率为( )
A. B. C. D.
(2015•江苏三模)已知λ,μ为常数,且为正整数,λ≠1,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意的正整数n,Sn=λan﹣μ.记数列{an}中任意两不同项的和构成的集合为A.
(1)证明:无穷数列{an}为等比数列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)对任意的n∈N*,记集合Bn={x|3μ•2n﹣1<x<3μ•2n,x∈A}中元素的个数为bn,求数列{bn}的通项公式.
(2015春•习水县校级期末)已知{an}是正项数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)若列数{bn}满足b1=1,bn+1=bn+2,求证:bnbn+2<b.
(2014秋•北京校级期中)已知函数f(x)=x2﹣(a+2)x+alnx(a为实常数).
(Ⅰ)若a=﹣2,求曲线 y=f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)在[1,e]上的单调性;
(Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.
(2015秋•枣庄校级月考)如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点.
(1)求证:BC∥平面EFG;
(2)DH⊥平面AEG.
(2015秋•山东校级月考)函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+f(3)+…+f(2015)= .
在中,,,所对的边分别为,,,若,且,求的面积的最大值.