题目内容
双曲线的离心率为( )
A. B. C. D.
设则的值为( ).
设函数.
(1)若不等式的解集,求的值;
(2)若,求的最小值.
《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的7倍,则最少的那份有( )个面包.
A.4 B.3 C.2 D.1
已知函数且,其中、
(1)求m的值;
(2)求函数的单调增区间.
经过圆的圆心C,且与直线x+y=0垂直的直线方程是( )
A. B.
C. D.
(2015秋•上海月考)对定义在[0,1]上的函数f(x),如果同时满足以下三个条件:
①对任意x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,有f(x1+x2)≥f(x1)+f(x2)成立.
则称函数f(x)为理想函数.
(1)判断g(x)=2x﹣1(x∈[0,1])是否为理想函数,并说明理由;
(2)若f(x)为理想函数,求f(x)的最小值和最大值;
(3)若f(x)为理想函数,假设存在x0∈[0,1]满足f[f(x0)]=x0,求证:f(x0)=x0.
(2015•河南二模)设a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.
(2015秋•如皋市月考)将函数图象上每一点的横坐标变为原来的2倍(纵坐标不变),然后把所得图象上的所有点沿x轴向右平移个单位,得到函数y=2sinx的图象,则f(φ)= .