题目内容

对于函数f(x),若存在区间M=[a,b],(a<b),使得,{y|yf(x),x∈M}=M则称区间为M函数f(x)的一个“稳定区间”给出下列4个函数,①f(x)=ex②f(x)=x3③f(x)=cos
π
2
x
④f(x)=lnx+1其中存在稳定区间区间的函数有(  )
A、①②B、①③C、②③D、②④
考点:进行简单的合情推理
专题:函数的性质及应用,推理和证明
分析:根据“稳定区间”的定义,我们要想说明函数存在“稳定区间”,我们只要举出一个符合定义的区间M即可,但要说明函数没有“稳定区间”,我们可以用反证明法来说明.由此对四个函数逐一进行判断,即可得到答案.
解答: 解:①对于函数f(x)=ex 若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,
即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,故①不存在“稳定区间”.
②对于f(x)=x3 存在“稳定区间”,如 x∈[0,1]时,f(x)=x3 ∈[0,1].
③对于f(x)=cos
π
2
x
,存在“稳定区间”,如 x∈[0,1]时,f(x)=cos
π
2
x
∈[0,1].
④对于 f(x)=lnx,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有lna=a,且lnb=b,即方程lnx=x 有两个解,
即y=lnx 和 y=x的图象有两个交点,这与y=lnx 和 y=x的图象没有公共点相矛盾,故④不存在“稳定区间”.
存在稳定区间区间的函数有 ②③.
故选:C
点评:本题考查的知识点是函数的概念及其构造要求,在说明一个函数没有“稳定区间”时,利用函数的性质、图象结合反证法证明是解答本题的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网