题目内容

底面ABCD为一个矩形,其中AB=6,AD=4.顶部线段EF∥平面ABCD,棱EA=ED=FB=FC=6
2
,EF=2,二面角F-BC-A的余弦值为
17
17
,设M,N是AD,BC的中点,
(I)证明:BC⊥平面EFNM;
(Ⅱ)求平面BEF和平面CEF所成锐二面角的余弦值.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)根据线面平行的性质得出EF∥AB,MN∥AB,MN∥EF,E,F,N,M四点共面,由BC⊥MN,且
FN?平面EFMN
MN?平面EFMN
FN∩MN=N
得证.
(2)确定角为∠SFQ是二面角B-EF-C的平面角,在△SFQ中,tan∠SFQ=tan(π-∠FSQ-∠FQS)=-
tan∠FSQ+tan∠FQS
1-tan∠FSQ•tan∠FQS
=
8
15
,运用三角函数即可求解余弦值.
解答: 证明:(1)∴EF∥平面ABCD,且EF?平面EFAB,
又平面ABCD∩平面EFAB=AB,
∴EF∥AB
又M,N是平行四边形两边AD,BC的中点,
∴MN∥AB∴MN∥EF,
∴E,F,N,M四点共面,
∵FB=FC,∴BC⊥MN,
FN?平面EFMN
MN?平面EFMN
FN∩MN=N

∴BC⊥平面EFNM;
解:(2)在平面EFNM内F作MN的垂线,垂足为H,则由(1)可知:
BC⊥平面EFNM;平面ABCD⊥平面EFNM;
∴FH⊥平面EFNM;
∵FB⊥BC,HN⊥BC,
∴二面角F-BC-A的平面角为∠FNH,
Rt△FNB,Rt△FNH中FN=
FB2-BN2
=
68
,HN=FNcos∠FNH=
68
×
17
17
=2,
∴FH=8,过H作AB,CD的垂线,垂足为S,Q.连接FN,FS,FQ,
∠SFQ∴∠SFQ是二面角B-EF-C的平面角,
是二面角B-EF-C的平面角,

有图可知,AB⊥SQ,AB⊥FH,
∴AB⊥平面FSQ,由(1)知EF∥AB,∴EF⊥平面FSQ,
∴∠SFQ是二面角B-EF-C的平面角,
∴在△SFQ中,tan∠SFQ=tan(π-∠FSQ-∠FQS)=-
tan∠FSQ+tan∠FQS
1-tan∠FSQ•tan∠FQS
=
8
15

∴COS∠QFS=
15
17

平面BEF和平面CEF所成锐二面角的余弦值为
15
17
点评:本题考查了空间直线,平面的平行,垂直,夹角问题,转化到三角形求解,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网