题目内容
(1)已知x1>0,x2>0且x1+x2=1,求x1log2x1+x2log2x2的最小值;
(2)已知xi>0(i=1,2,3,4)且x1+x2+x3+x4=1,求证:x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2;
(3)已知xi>0(i=1,2,3,4,5,6,7,8)且x1+x2+x3+…+x8=1,类比(2)给出一个你认为正确的结论,并证明你的结论.
(2)已知xi>0(i=1,2,3,4)且x1+x2+x3+x4=1,求证:x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2;
(3)已知xi>0(i=1,2,3,4,5,6,7,8)且x1+x2+x3+…+x8=1,类比(2)给出一个你认为正确的结论,并证明你的结论.
考点:类比推理
专题:推理和证明
分析:(1)设x=x1,则x2=1-x,利用导数求最值;
(2)设x1+x2=m,x3+x4=n,则m>0,n>0,且
+
=1,
+
=1,m+n=1,由此证明.
(3)类比(2)易得结论,证明类似(2).
(2)设x1+x2=m,x3+x4=n,则m>0,n>0,且
| x1 |
| m |
| x2 |
| m |
| x3 |
| n |
| x4 |
| n |
(3)类比(2)易得结论,证明类似(2).
解答:
(1)设x=x1,则x2=1-x
∴x1log2x1+x2log2x2=xlog2x+(1-x)log2(1-x),
令f(x)=xlog2x+(1-x)log2(1-x),
则f'(x)=log2x-log2(1-x),
若f'(x)=0,则x=
当x<
时,f'(x)<0,f(x)单调递减;
当x>
时,f'(x)>0,f(x)单调递增.
f(
)是f(x)在(0,1)内的最小值.
所以f(x)≥f(
)=
log2
+(1-
)log2(1-
)=-1,
即x1log2x1+x2log2x2得最小值是-1.
(2)证明:设x1+x2=m,x3+x4=n,
则m>0,n>0,且
+
=1,
+
=1,m+n=1,
∴
log2
+
log2
≥-1,①
log2
+
log2
≥-1.②
mlog2m+nlog2n≥-1③,
由①式得x1(log2x1-log2m)+x2(log2x2-log2m)≥-m,
∴x1log2x1+x2log2x2≥-m+mlog2m
同理:由②得到:x3log2x3+x4log2x4≥-n+nlog2n,
∴x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-(m+n)+(mlog2m+nlog2n),
由③式和m+n=1得到:x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
∴x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
(3)结论:若xi>0(i=1,2,3,4,5,6,7,8)且x1+x2+x3+…+x8=1,
则x1log2x1+x2log2x2+x3log2x3+…+x8log2x8≥-3.
证明:设x1+x2+x3+x4=m,x5+x6+x7+x8=n,则m>0,n>0,且m+n=1,
+
+
+
=1,
+
+
+
=1,
由(1)和(2)得到:mlog2m+nlog2n≥-1,
log2
+
log2
+
log2
+
log2
≥-2,
log2
+
log2
+
log2
+
log2
≥-2,
所以:x1log2x1+x2log2x2+x3log2x3+…+x8log2x8≥-2(m+n)+(mlog2m+nlog2n)≥-3
∴x1log2x1+x2log2x2=xlog2x+(1-x)log2(1-x),
令f(x)=xlog2x+(1-x)log2(1-x),
则f'(x)=log2x-log2(1-x),
若f'(x)=0,则x=
| 1 |
| 2 |
当x<
| 1 |
| 2 |
当x>
| 1 |
| 2 |
f(
| 1 |
| 2 |
所以f(x)≥f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
即x1log2x1+x2log2x2得最小值是-1.
(2)证明:设x1+x2=m,x3+x4=n,
则m>0,n>0,且
| x1 |
| m |
| x2 |
| m |
| x3 |
| n |
| x4 |
| n |
∴
| x1 |
| m |
| x1 |
| m |
| x2 |
| m |
| x2 |
| m |
| x3 |
| n |
| x3 |
| n |
| x4 |
| n |
| x4 |
| n |
mlog2m+nlog2n≥-1③,
由①式得x1(log2x1-log2m)+x2(log2x2-log2m)≥-m,
∴x1log2x1+x2log2x2≥-m+mlog2m
同理:由②得到:x3log2x3+x4log2x4≥-n+nlog2n,
∴x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-(m+n)+(mlog2m+nlog2n),
由③式和m+n=1得到:x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
∴x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
(3)结论:若xi>0(i=1,2,3,4,5,6,7,8)且x1+x2+x3+…+x8=1,
则x1log2x1+x2log2x2+x3log2x3+…+x8log2x8≥-3.
证明:设x1+x2+x3+x4=m,x5+x6+x7+x8=n,则m>0,n>0,且m+n=1,
| x1 |
| m |
| x2 |
| m |
| x3 |
| m |
| x4 |
| m |
| x5 |
| n |
| x6 |
| n |
| x7 |
| n |
| x8 |
| n |
由(1)和(2)得到:mlog2m+nlog2n≥-1,
| x1 |
| m |
| x1 |
| m |
| x2 |
| m |
| x2 |
| m |
| x3 |
| m |
| x3 |
| m |
| x4 |
| m |
| x4 |
| m |
| x5 |
| n |
| x5 |
| n |
| x6 |
| n |
| x6 |
| n |
| x7 |
| n |
| x7 |
| n |
| x8 |
| n |
| x8 |
| n |
所以:x1log2x1+x2log2x2+x3log2x3+…+x8log2x8≥-2(m+n)+(mlog2m+nlog2n)≥-3
点评:本题考查不等式的证明以及对数的基本运算,解题时要认真审题,注意等价转化思想的合理运用,综合性较强.
练习册系列答案
相关题目
已知p:|x-2|<3,q:0<x<5,那么p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |