题目内容

已知{an}是公差不等于0的等差数列,a1=2且a2,a4,a5成等比数列,若bn=
1
n(an+2)
,则数列{bn}的前n项饿的取值范围是
 
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:设等差数列{an}是公差为d且d不为0,由题意和等比中项的性质列出方程求出d的值,代入等差数列的通项公式求出an,再代入bn=
1
n(an+2)
化简后进行裂项,由裂项相消法求出数列{bn}的前n项和,化简后由式子个特点和n的取值范围求出它的范围.
解答: 解:设等差数列{an}是公差为d,且d不为0,
由a1=2且a2,a4,a8成等比数列得,(2+4d)2=(2+d)(2+7d),
解得d=2或d=0(舍去),
所以an=a1+(n-1)d=2n,
则bn=
1
n(an+2)
=
1
2
1
n
-
1
n+1
),
所以数列{bn}的前n项和Sn=b1+b2+…+bn
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
1
2
[1-
1
n+1
]<
1
2

又n≥1,所以Sn
1
4

所以数列{bn}的前n项和Sn的取值范围是[
1
4
1
2
),
故答案为:[
1
4
1
2
).
点评:本题考查了等比中项的性质,等差数列的通项公式,数列的求和方法:裂项相消法的应用,以及数列的函数特性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网