题目内容
2.点G为△ABC的重心,设$\overrightarrow{BG}$=$\overrightarrow{a}$,$\overrightarrow{GC}$=$\overrightarrow{b}$,则$\overrightarrow{AB}$=( )| A. | $\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}\overrightarrow{b}$ | B. | $\frac{3}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$ | C. | $\overrightarrow{b}$-2$\overrightarrow{a}$ | D. | 2$\overrightarrow{a}+\overrightarrow{b}$ |
分析 由题意作图辅助,从而利用线性运算求解即可.
解答
解:由题意知,
$\overrightarrow{EB}$+$\overrightarrow{BG}$=$\overrightarrow{EG}$,
即$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BG}$=$\frac{1}{2}$$\overrightarrow{GC}$,
故$\overrightarrow{AB}$=$\overrightarrow{GC}$-2$\overrightarrow{BG}$=$\overrightarrow{b}$-2$\overrightarrow{a}$,
故选C.
点评 本题考查了学生的作图能力及数形结合的思想应用.
练习册系列答案
相关题目
15.如果cotα=2,则sin2α的值是( )
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若F2关于渐近线的对称点为M,且|MF1|=$\sqrt{2}$c,则该双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 2 |
7.
已知三棱锥的直观图及正视图与俯视图如图,其中正视图是直角边为3的等腰直角三角形,俯视图是边长为3的正三角形,则该三棱锥侧视图的面积为( )
| A. | $\frac{9}{2}$ | B. | $\frac{9}{4}$ | C. | $\frac{9\sqrt{3}}{2}$ | D. | $\frac{9\sqrt{3}}{4}$ |
14.已知AB是单位圆上的动点,且|AB|=$\sqrt{3}$、单位圆的圆心为O,则$\overrightarrow{OA}•\overrightarrow{OB}$=( )
| A. | -$\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
11.已知m,n表示不同的直线,α,β表示不同的平面,则下列命题正确的个数是( )
①若m⊥α,n⊥α,则m∥n;
②若m⊥n,n⊥α,则m∥α;
③若m⊥β,α⊥β,则m∥α;
④若m⊥α,m⊥β,则α∥β.
①若m⊥α,n⊥α,则m∥n;
②若m⊥n,n⊥α,则m∥α;
③若m⊥β,α⊥β,则m∥α;
④若m⊥α,m⊥β,则α∥β.
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
12.设集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,则P∩Q=( )
| A. | $(-4,\frac{1}{9})$ | B. | $(\frac{1}{9},2]$ | C. | $(\frac{1}{3},2]$ | D. | $(\frac{1}{3},2)$ |