题目内容
20.| A. | $\frac{asinαsinβ}{{sin({α-β})}}$ | B. | $\frac{asinαcosβ}{{sin({α-β})}}$ | C. | $\frac{acosαsinβ}{{sin({α-β})}}$ | D. | $\frac{acosαcosβ}{{sin({α-β})}}$ |
分析 利用正弦定理,及直角三角形中的三角函数,即可得出结论.
解答 解:△ABC中,$\frac{a}{sin(α-β)}=\frac{AB}{sin(π-α)}$,∴AB=$\frac{asinα}{sin(α-β)}$,
△ABH中,AH=$\frac{asinαsinβ}{{sin({α-β})}}$,
故选A.
点评 本题考查正弦定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
15.在△ABC中,a、b、c分别是角A、B、C的对边,若A=$\frac{π}{3}$,c=1,△ABC的面积为$\sqrt{3}$,则a的值为( )
| A. | 2 | B. | 4 | C. | $2\sqrt{3}$ | D. | $\sqrt{13}$ |