题目内容
10.(1)求居民收入在[3000,3500)的频率;
(2)根据频率分布直方图算出样本数据的中位数、平均数
及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?
分析 (1)根据频率=小矩形的高×组距来求;
(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可,运用取中间数乘频率,再求之和,计算可得平均数;
(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案.
解答 解:(1)居民收入在[3000,3500)的频率为0.0003×500=15%.
(2)中位数为$2000+500×\frac{4}{5}=2400$,
平均数为1250×10%+1750×20%+2250×25%+2750×25%+3250×15%+3750×5%=2400,其众数2250,2750.
(3)在月收入为[2500,3000)的人中抽取25人.
点评 本题考查了频率分布直方图,分层抽样方法,是统计常规题型,解答此类题的关键是利用频率分布直方图求频数或频率.
练习册系列答案
相关题目
20.
如图,在点B处测得山顶A的仰角为β,在点C处测得山顶A的仰角为α,BC=a,则山高AH为( )
| A. | $\frac{asinαsinβ}{{sin({α-β})}}$ | B. | $\frac{asinαcosβ}{{sin({α-β})}}$ | C. | $\frac{acosαsinβ}{{sin({α-β})}}$ | D. | $\frac{acosαcosβ}{{sin({α-β})}}$ |