题目内容
“α为锐角”是“sinα>0”的( )
| A、充分非必要条件 |
| B、必要非充分条件 |
| C、充要条件 |
| D、非充分非必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据三角函数的性质,利用充分条件和必要条件的定义进行判断即可得到结论.
解答:
解:若“α为锐角”则“sinα>0”成立,即充分性成立,
当α=90°时,满足sinα=1>0,但α为锐角不成立,即必要性不成立,
故“α为锐角”是“sinα>0”的充分不必要条件,
故选:A
当α=90°时,满足sinα=1>0,但α为锐角不成立,即必要性不成立,
故“α为锐角”是“sinα>0”的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据三角函数的性质是解决本题的关键.
练习册系列答案
相关题目
设有穷数列{an}(n=1,2,…,n),Sn是其前n项和,定义
为{an}的“凯森和”.今有500项的数列a1,a2,…,a500的“凯森和”为2004,则有501项的数列2,a1,a2,…,a500的“凯森和”为( )
| S1+S2+…+Sn |
| n |
| A、2002 | B、2004 |
| C、2008 | D、2014 |
已知函数f(x)=|
-1|,若存在正实数a,b(a<b),使得集合{y|y=f(x),a≤x≤b}=[ma,mb],则m的取值范围为( )
| 1 |
| x |
A、(0,
| ||||
B、(0,
| ||||
C、(
| ||||
D、(
|
若函数f(x)在给定区间M上存在正数t,使得对于任意的x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上t级类增函数,则下列命题中正确的是( )
A、函数f(x)=
| ||||||
| B、函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数 | ||||||
C、若函数f(x)=sinx+ax为[
| ||||||
| D、若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[2,+∞) |
在△ABC中,若B=120°,AC=
,则
=( )
| 3 |
| BC |
| sinA |
| A、2 | ||||
| B、1 | ||||
C、
| ||||
D、
|
已知函数y=2sin(ωx+φ)(ω>0,|φ|<
)的图象的一部分如图所示,则( )

| π |
| 2 |
A、ω=2,φ=
| ||
B、ω=2,φ=-
| ||
C、ω=2,φ=
| ||
D、ω=2,φ=-
|
已知直线的倾斜角的余弦值是
,则此直线的斜率是( )
| 1 |
| 2 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、±
|