题目内容

已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{
1
Sn
}的前n项和为Tn,求证:
1
6
≤Tn
3
8
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由题意得
5a1+10d=70
(a1+6d)2=(a1+d)(a1+21d)
,由此能求出an=4n+2.
(2)由a1=6,d=4,得Sn=2n2+4n,
1
Sn
=
1
2n(n+2)
=
1
4
(
1
n
-
1
n+2
)
,从而Tn=
1
4
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)
=
3
8
-
2n+3
4(n+1)(n+2)
3
8
,由此能证明
1
6
≤Tn
3
8
解答: 解:(1)由题意得
5a1+10d=70
(a1+6d)2=(a1+d)(a1+21d)

解得a1=6,d=4,
∴an=6+(n-1)×4=4n+2.

(2)∵a1=6,d=4,
∴Sn=6n+
n(n-1)
2
×4
=2n2+4n,
1
Sn
=
1
2n(n+2)
=
1
4
(
1
n
-
1
n+2
)

∴Tn=
1
4
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)

=
1
4
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
8
-
2n+3
4(n+1)(n+2)
3
8

(Tnmin=T1=
3
8
-
2n+3
4(n+1)(n+2)
=
1
6

1
6
≤Tn
3
8
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网