题目内容
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{
}的前n项和为Tn,求证:
≤Tn<
.
(1)求数列{an}的通项公式;
(2)设数列{
| 1 |
| Sn |
| 1 |
| 6 |
| 3 |
| 8 |
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由题意得
,由此能求出an=4n+2.
(2)由a1=6,d=4,得Sn=2n2+4n,
=
=
(
-
),从而Tn=
(1-
+
-
+…+
-
)=
-
<
,由此能证明
≤Tn<
.
|
(2)由a1=6,d=4,得Sn=2n2+4n,
| 1 |
| Sn |
| 1 |
| 2n(n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 8 |
| 2n+3 |
| 4(n+1)(n+2) |
| 3 |
| 8 |
| 1 |
| 6 |
| 3 |
| 8 |
解答:
解:(1)由题意得
,
解得a1=6,d=4,
∴an=6+(n-1)×4=4n+2.
(2)∵a1=6,d=4,
∴Sn=6n+
×4=2n2+4n,
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1+
-
-
)
=
-
<
,
(Tn)min=T1=
-
=
.
故
≤Tn<
.
|
解得a1=6,d=4,
∴an=6+(n-1)×4=4n+2.
(2)∵a1=6,d=4,
∴Sn=6n+
| n(n-1) |
| 2 |
| 1 |
| Sn |
| 1 |
| 2n(n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 8 |
| 2n+3 |
| 4(n+1)(n+2) |
| 3 |
| 8 |
(Tn)min=T1=
| 3 |
| 8 |
| 2n+3 |
| 4(n+1)(n+2) |
| 1 |
| 6 |
故
| 1 |
| 6 |
| 3 |
| 8 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
| A、(-1,+∞) |
| B、(-∞,-1) |
| C、(2,+∞) |
| D、(-∞,-2) |
直线y=2x与直线y=2x+5间的距离为( )
A、
| ||||
B、
| ||||
| C、5 | ||||
D、
|