题目内容
18.分析 列出循环过程中S与n的数值,满足判断框的条件即可结束循环.
解答 解:模拟执行程序,可得
n=6,S=3sin60°=$\frac{3\sqrt{3}}{2}$,
不满足条件S≥3.10,n=12,S=6×sin30°=3,
不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
满足条件S≥3.10,退出循环,输出n的值为24.
故答案为:24.
点评 本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.
练习册系列答案
相关题目
13.已知集合A={1,2,3,4},集合B={x|x∈A,且2x∉A},则A∩B=( )
| A. | {1,2} | B. | {1,3} | C. | {2,4} | D. | {3,4} |
3.复数z=i(-1+3i)在复平面上对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.设m为不小于2的正整数,对任意n∈Z,若n=qm+r(其中q,r∈Z,且0≤r<m),则记fm(n)=r,如f2(3)=1,f3(8)=2,下列关于该映射fm:Z→Z的命题中,不正确的是( )
| A. | 若a,b∈Z,则fm(a+b)=fm(a)+fm(b) | |
| B. | 若a,b,k∈Z,且fm(a)=fm(b),则fm(ka)=fm(kb) | |
| C. | 若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),则fm(a+c)=fm(b+d) | |
| D. | 若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),则fm(ac)=fm(bd) |
8.已知a+b(a>0,b>0)是函数f(x)=-x+30-3a的零点,则使得$\frac{1}{a}+\frac{1}{b}$取得最小值的有序实数对(a,b)是 ( )
| A. | (10,5) | B. | (7,2) | C. | (6,6) | D. | (5,10) |