题目内容
4.已知函数f(x)是定义在R上的周期为4的奇函数,当0<x<2时,f(x)=2x,则 f(-$\frac{9}{2}$)+f(4)=-$\sqrt{2}$.分析 由函数的周期性和奇偶性得到 f(-$\frac{9}{2}$)+f(4)=f(-$\frac{1}{2}$-4)+f(4)=f(-$\frac{1}{2}$)+f(0),再由当0<x<2时,f(x)=2x,能求出结果.
解答 解:∵函数f(x)是定义在R上的周期为4的奇函数,
当0<x<2时,f(x)=2x,
∴f(-$\frac{9}{2}$)+f(4)=f(-$\frac{1}{2}$-4)+f(4)
=f(-$\frac{1}{2}$)+f(0)
=-f($\frac{1}{2}$)+0
=-${2}^{\frac{1}{2}}$=-$\sqrt{2}$.
故答案为:-$\sqrt{2}$.
点评 本题考查函数值的求法,考查函数的周期性、奇偶性等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
3.已知1<a<b,m=ab-1,n=ba-1,则m,n的大小关系为( )
| A. | m<n | |
| B. | m=n | |
| C. | m>n | |
| D. | m,n的大小关系不确定,与a,b的取值有关 |
12.已知研究x与y之间关系的一组数据如表所示:
则y对x的回归直线方程$\stackrel{∧}{y}$=bx+a必过点( )
| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 3.5 | 5.5 | 7 | 8 |
| A. | (1,4) | B. | (2,5) | C. | (3,7) | D. | (4,8) |
19.某种产品的广告费用支出x与销售额y之间有如下的对应数据(单位:万元):
(1)求y关于x的线性回归直线方程;
(2)据此估计广告费用为10万元时销售收入y的值.
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)据此估计广告费用为10万元时销售收入y的值.
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
13.
已知函数f(x)=x3+bx2+cx+d的图象如图,则函数$y={log_2}({x^2}+\frac{2}{3}bx+\frac{c}{3})$的单调递减区间是( )
| A. | (-∞,-2) | B. | (-∞,1) | C. | (-2,4) | D. | (1,+∞) |