题目内容

17.如图,有一个半径为20m的圆形水池,甲、乙两人分别从水池一条直径AB的两端开始,同时按逆时针方向绕水池边缘做匀速圆周运动,已知乙绕水池2圈需要1min,甲的速度是乙的两倍.如果从两人出发时开始计时,求当乙绕水池1周的过程中,两人的直线距离l(m)和时间t(s)的函数关系式.

分析 求出甲、乙两人与圆心O连线的夹角,利用余弦定理到出函数关系式即可.

解答 解:由题意可知乙的周期为30s,甲的周期为:15s,ω=$\frac{π}{15}$,ω=$\frac{2π}{15}$,
∠POQ=$\frac{π}{15}$t+π-$\frac{2π}{15}$t=π-$\frac{π}{15}$t,t∈[0,30].
OP=OQ=20.
两人的直线距离l(m)和时间t(s)的函数关系式:
l=$\sqrt{{20}^{2}+{20}^{2}-2×20×20cos(π-\frac{π}{15}t)}$=20$\sqrt{2-2cos(π-\frac{π}{15}t)}$m,t∈[0,30].

点评 本题考查余弦定理的应用,三角形的解法,考查转化思想的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网