题目内容
已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},a∈P,b∈Q,则有( )
| A、(a+b)∈P |
| B、(a+b)∈Q |
| C、(a+b)∈R |
| D、以上都不对 |
考点:元素与集合关系的判断
专题:计算题,集合
分析:根据集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},我们易判断P,Q表示的集合及集合中元素的性质,分析a+b的性质后,即可得到答案.
解答:
解:由可知P表示偶数集;
由可知Q表示奇数集;
当a∈P,b∈Q,则a为奇数,b为偶数,
则a+b一定为奇数,
故选B
由可知Q表示奇数集;
当a∈P,b∈Q,则a为奇数,b为偶数,
则a+b一定为奇数,
故选B
点评:本题考查的知识点是元素与集合关系的判断,其中根据集合元素的确定性,即满足集合性质的元素一定属于集合,不满足集合性质的元素一定不属于集合,分析元素是否满足集合性质,进而得到元素与集合的关系是解答本题的关键.
练习册系列答案
相关题目
在正方体ABCD-A1B1C1D1中,结合各棱长的中点和8个顶点,在这20个点中,任取两点构成的直线中与直线BD1
垂直的条数是( )
垂直的条数是( )
| A、18 | B、21 | C、27 | D、36 |
下面有关向量数量积的关系式,不正确的一项是( )
A、0•
| ||||||||||||
B、(
| ||||||||||||
C、
| ||||||||||||
D、|
|
| BC |
| AD |
| A、3 | ||
B、
| ||
C、
| ||
D、
|
已知f(x)=|x+1|+|x-2|+|x+3|+|x-4|+…+|x+2013|+|x-2014|,(x∈R)且f(a2-3a+2)=f(a-1),则a的值有( )
| A、2个 | B、3个 |
| C、2014个 | D、无数个 |
若变量x,y在实验中的几组测量数据如下表所示:则下列函数中,最适合表示这种关系的函数是( )
| x | 0.50 | 0.99 | 2.01 | 2.98 |
| y | 1.42 | 1.99 | 3.98 | 8.00 |
| A、y=2x |
| B、y=log2x |
| C、y=x+1 |
| D、y=x2+1 |