题目内容

6.已知数列{an}满足下列公式,写出它们的前5项:
(1)an=(-1)n(n2+1),
(2)a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1).

分析 (1)根据数列{an}的通项公式,即可写出它们的前5项;
(2)根据数列{an}的首项与递推公式,即可写出它们的前5项.

解答 解:(1)数列{an}中,an=(-1)n(n2+1),
所以a1=-1×(12+1)=-2,
a2=(-1)2×(22+1)=5,
a3=(-1)3×(32+1)=-10,
a4=(-1)4×(42+1)=17,
a5=(-1)5×(52+1)=-26;
(2)数列{an}中,a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1);
所以a2=1+$\frac{1}{{a}_{1}}$=1+1=2,
a3=1+$\frac{1}{{a}_{2}}$=1+$\frac{1}{2}$=$\frac{3}{2}$,
a4=1+$\frac{1}{{a}_{3}}$=1+$\frac{2}{3}$=$\frac{5}{3}$,
a5=1+$\frac{1}{{a}_{4}}$=1+$\frac{3}{5}$=$\frac{8}{5}$.

点评 本题考查了根据数列的通项公式或递推公式写出对应项的问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网