题目内容

14.数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则$\frac{1}{a_1}+\frac{1}{a_2}+$…$+\frac{1}{{{a_{2016}}}}$等于(  )
A.$\frac{4032}{2017}$B.$\frac{4028}{2015}$C.$\frac{2015}{2016}$D.$\frac{2014}{2015}$

分析 an+1=a1+an+n(n∈N*),a1=1.可得an+1-an=n+1,利用“累加求和”方法可得an=$\frac{n(n+1)}{2}$.可得$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.即可得出.

解答 解:∵an+1=a1+an+n(n∈N*),a1=1.
∴an+1-an=n+1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+1=$\frac{n(n+1)}{2}$.
∴$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
则$\frac{1}{a_1}+\frac{1}{a_2}+$…$+\frac{1}{{{a_{2016}}}}$=$2[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})]$
=2$(1-\frac{1}{2017})$=$\frac{4032}{2017}$.
故选:A.

点评 本题考查了等差数列的通项公式与求和公式、“累加求和”方法与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网