题目内容

设数列{an}满足,a1=2,an+1=an2-n+1,n∈N*,求a1,a2,a3,a4,并由此猜想an的一个通项公式,证明你的结论.
考点:归纳推理
专题:推理和证明
分析:由数列{an}满足:an+1=an2-nan+1,n=1,2,3,…及a1=2,我们易得到a2,a3,a4的值;我们可以归纳推理出an的一个通项公式.使用数学归纳法,先证明n=1时,结论成立,再假设n=k时结论成立,进而论证n=k+1时,结论依然成立,从而得证.
解答: 解:由a1=2,得a2=a12-a1+1=3
由a2=3,得a3=a22-2a2+1=4
由a3=4,得a4=a32-3a3+1=5
由此猜想an的一个通项公式an=n+1
用数学归纳法证明
①由a1=2=1+1知n=1时,an=n+1成立
设n=k(k属于正整数)时an=n+1成立,即ak=k+1
则当n=k+1时,因为an+1=an2-nan+1,
所以ak+1=ak2-k(k+1)+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-k+1=k+2
综上,an=n+1成立
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).但归纳推理的结论不一定正确,我们要利用数学归纳法等方法对归纳的结论进行进一步的论证.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网