题目内容
已知数列{an}得首项为a1=2,前n项和为Sn,且满足Sn=
Sn-1+
(n≥2)
(1)证明数列(
Sn)是等差数列,并求数列{an}得通项公式;
(2)设bn=
.记数列{bn}得前n项和为Tn,求证:Tn<1.
| n2 |
| n2-1 |
| n |
| n+1 |
(1)证明数列(
| n+1 |
| n |
(2)设bn=
| an |
| 4n2-4n+3 |
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
S1=2a1=4,
Sn=
×
Sn-1+
×
=
Sn-1+1,由此能证明数列{
Sn}是以4为首项,1为公差的等差数列,从而Sn=
,进而能求出an=
.
(2)n=1时,b1=
=
,n≥2时,bn=
=
-
,由此利用裂项求和法能证明Tn<1.
| 1+1 |
| 1 |
| n+1 |
| n |
| n+1 |
| n |
| n2 |
| n2-1 |
| n |
| n+1 |
| n+1 |
| n |
| n |
| n-1 |
| n+1 |
| n |
| (4n-3)(n+1) |
| n |
|
(2)n=1时,b1=
| 2 |
| 4-4+3 |
| 2 |
| 3 |
| 1 |
| n2-n |
| 1 |
| n-1 |
| 1 |
| n |
解答:
(1)证明:∵数列{an}得首项为a1=2,前n项和为Sn,且满足Sn=
Sn-1+
(n≥2)
∴n=1时,
S1=2a1=4,
Sn=
×
Sn-1+
×
=
Sn-1+1,
∴
Sn-
Sn-1=1,
∴数列{
Sn}是以4为首项,1为公差的等差数列,
∴
Sn=4+(n-1)×1=4n-3,
∴Sn=
,
∴n=1时,a1=S1=
=2,
n≥2时,an=Sn-Sn-1=
-
=
.
n=1时,不成立,∴an=
.
(2)证明:∵bn=
,∴n=1时,b1=
=
,
n≥2时,bn=
=
-
,
∴n=1时,T1=b1=
<1,
n≥2时,Tn=1-
+
+
+…+
-
=1-
<1,
综上,Tn<1.
| n2 |
| n2-1 |
| n |
| n+1 |
∴n=1时,
| 1+1 |
| 1 |
| n+1 |
| n |
| n+1 |
| n |
| n2 |
| n2-1 |
| n |
| n+1 |
| n+1 |
| n |
=
| n |
| n-1 |
∴
| n+1 |
| n |
| n |
| n-1 |
∴数列{
| n+1 |
| n |
∴
| n |
| n+1 |
∴Sn=
| (4n-3)(n+1) |
| n |
∴n=1时,a1=S1=
| (4-3)(1+1) |
| 1 |
n≥2时,an=Sn-Sn-1=
| (4n-3)(n+1) |
| n |
| (4n-7)n |
| n-1 |
| 4n2-4n+3 |
| n2-n |
n=1时,不成立,∴an=
|
(2)证明:∵bn=
| an |
| 4n2-4n+3 |
| 2 |
| 4-4+3 |
| 2 |
| 3 |
n≥2时,bn=
| 1 |
| n2-n |
| 1 |
| n-1 |
| 1 |
| n |
∴n=1时,T1=b1=
| 2 |
| 3 |
n≥2时,Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
综上,Tn<1.
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知a,b是实数,则“lga>lgb”是“(
)a<(
)b”的( )
| 1 |
| 3 |
| 1 |
| 3 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+x-3,则f(x)的零点个数为( )
| A、1 | B、2 | C、3 | D、4 |