题目内容

已知数列{an}得首项为a1=2,前n项和为Sn,且满足Sn=
n2
n2-1
Sn-1+
n
n+1
(n≥2)
(1)证明数列(
n+1
n
Sn)是等差数列,并求数列{an}得通项公式;
(2)设bn=
an
4n2-4n+3
.记数列{bn}得前n项和为Tn,求证:Tn<1.
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
1+1
1
S1
=2a1=4,
n+1
n
Sn=
n+1
n
×
n2
n2-1
Sn-1+
n
n+1
×
n+1
n
=
n
n-1
Sn-1
+1,由此能证明数列{
n+1
n
Sn}是以4为首项,1为公差的等差数列,从而Sn=
(4n-3)(n+1)
n
,进而能求出an=
2,n=1
4n2-4n+3
n2-n
,n≥2

(2)n=1时,b1=
2
4-4+3
=
2
3
,n≥2时,bn=
1
n2-n
=
1
n-1
-
1
n
,由此利用裂项求和法能证明Tn<1.
解答: (1)证明:∵数列{an}得首项为a1=2,前n项和为Sn,且满足Sn=
n2
n2-1
Sn-1+
n
n+1
(n≥2)
∴n=1时,
1+1
1
S1
=2a1=4,
n+1
n
Sn=
n+1
n
×
n2
n2-1
Sn-1+
n
n+1
×
n+1
n

=
n
n-1
Sn-1
+1,
n+1
n
Sn-
n
n-1
Sn-1
=1,
∴数列{
n+1
n
Sn}是以4为首项,1为公差的等差数列,
n
n+1
Sn
=4+(n-1)×1=4n-3,
∴Sn=
(4n-3)(n+1)
n

∴n=1时,a1=S1=
(4-3)(1+1)
1
=2

n≥2时,an=Sn-Sn-1=
(4n-3)(n+1)
n
-
(4n-7)n
n-1
=
4n2-4n+3
n2-n

n=1时,不成立,∴an=
2,n=1
4n2-4n+3
n2-n
,n≥2

(2)证明:∵bn=
an
4n2-4n+3
,∴n=1时,b1=
2
4-4+3
=
2
3

n≥2时,bn=
1
n2-n
=
1
n-1
-
1
n

∴n=1时,T1=b1=
2
3
<1,
n≥2时,Tn=1-
1
2
+
1
2
+
1
3
+…+
1
n-1
-
1
n
=1-
1
n
<1,
综上,Tn<1.
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网