题目内容

1.已知在△ABC中,角A、B、C所对应的边为a,b,c.
(I)若sin(A+$\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$cosA,求A的值;
(Ⅱ)若cosA=$\frac{1}{3}$,b=3c,求sinC的值.

分析 (I)利用两角和的正弦函数公式,特殊角的三角函数值,同角三角函数基本关系式化简已知可得:tanA=$\frac{\sqrt{3}}{3}$,结合范围A∈(0,π),即可解得A的值.
(Ⅱ)利用同角三角函数基本关系式可求sinA,利用余弦定理可求a=$2\sqrt{2}$c,利用正弦定理即可求得sinC的值.

解答 解:(I)∵sin(A+$\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$cosA,
∴$\frac{1}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\frac{2\sqrt{3}}{3}$cosA,解得:tanA=$\frac{\sqrt{3}}{3}$,
∴由A∈(0,π),可得:A=$\frac{π}{6}$.
(Ⅱ)∵cosA=$\frac{1}{3}$,b=3c,
∴a2=b2+c2-2bccosA=8c2
∴a=$2\sqrt{2}$c,而sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
由正弦定理得:$\frac{2\sqrt{2}c}{sinA}=\frac{c}{sinC}$,
∴sinC=$\frac{1}{3}$.

点评 本题主要考查了两角和的正弦函数公式,特殊角的三角函数值,同角三角函数基本关系式,正弦定理,余弦定理的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网