题目内容
5.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|MA|,若$\frac{|MA|}{|AF|}$=2,则|AF|等于( )| A. | $\frac{3}{2}$ | B. | 1 | C. | 2 | D. | 3 |
分析 由题意,|MF|=x0+$\frac{p}{2}$.利用圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|MA|,可得|MA|=2(x0-$\frac{p}{2}$),利用$\frac{|MA|}{|AF|}$=2,求出x0,p,即可求出|AF|.
解答 解:由题意,|MF|=x0+$\frac{p}{2}$.
∵圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|MA|,
∴|MA|=2(x0-$\frac{p}{2}$),
∵$\frac{|MA|}{|AF|}$=2,
∴|MF|=$\frac{3}{2}$|MA|,
∴x0=p,
∴2p2=8,∴p=2,
∴|AF|=1.
故选B.
点评 本题考查抛物线的方程与定义,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
15.设集合M={α|α=k•90°-36°,k∈Z},N={α|-180°<α<180°},则M∩N=( )
| A. | {-36°,54°} | B. | {-126°,144°} | ||
| C. | {-36°,54°,-126°,144°} | D. | {54°,-126°} |
13.设函数f(x)在R上的导函数为f′(x),对?x∈R有f(x)+f(-x)=x2,在(0,+∞)上f′(x)-x<0,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是( )
| A. | [2,+∞) | B. | (-∞,2] | C. | (-∞,2]∪[2,+∞) | D. | [-2,2] |
20.调查表明:甲种农作物的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定这种农作物的长势等级,若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级,为了了解目前这种农作物长势情况,研究人员随机抽取10块种植地,得到如表中结果:
(Ⅰ)在这10块该农作物的种植地中任取两块地,求这两块地的空气湿度的指标z相同的概率;
(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A-B,求X的分布列及其数学期望.
| 种植地编号 | A1 | A2 | A3 | A4 | A5 |
| (x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) |
| 种植地编号 | A6 | A7 | A8 | A9 | A10 |
| (x,y,z) | (1,1,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A-B,求X的分布列及其数学期望.