题目内容
17.已知实数x,y满足$\left\{\begin{array}{l}x-y+4≥0\\ x-3y-6≤0\\ 2x+3y-12≤0\end{array}\right.$则z=x+2y的最大值为8.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x-3y-6≤0\\ 2x+3y-12≤0\end{array}\right.$作出可行域如图,![]()
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线为$y=-\frac{x}{2}+\frac{z}{2}$过A(0,4)时,直线在y轴上的截距最大,z有最大值为8.
故答案为:8.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
5.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|MA|,若$\frac{|MA|}{|AF|}$=2,则|AF|等于( )
| A. | $\frac{3}{2}$ | B. | 1 | C. | 2 | D. | 3 |
2.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,$\overrightarrow a=(2,0)$,$|\overrightarrow b|=1$,则$|\overrightarrow a+2\overrightarrow b|$=( )
| A. | 1 | B. | 2 | C. | $2\sqrt{3}$ | D. | 4 |
7.某公司有A,B,C,D,E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为$\frac{1}{2}$,C、D两辆汽车每天出车的概率均为$\frac{2}{3}$,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.
| 车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
| 限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.