题目内容
执行下图所示的程序框图,若输入A=2014,B=125,输出的A的值是____ .
1
函数的图象的一条对称轴方程是 ( )
A. B. C. D.
已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.
(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;
(2)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求数列{an}的通项公式.
已知各项均为正数的数列{an}的前n项和为Sn,满足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比数列{bn}的前三项.
(1)求数列{an}及{bn}的通项公式;
(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.
第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有2名来自莫斯科国立大学,有4名来自圣彼得堡国立大学,现从这6名志愿者中随机抽取2人,至少有1名志愿者来自莫斯科国立大学的概率是( )
A. B. C. D.
在△ABC中,a、b、c分别为角A、B、C所对的边,且
(2b+c)cosA+acosC =0
(I)求角A的大小:
(II)求的最大值,并求取得最大值时角 B.C的大小.
设A、B是两个非空集合,定义运算,已知
),则A× B=( )
A.[o,1] B.[o,2]
C.∞) D.[0,1] (2,+∞)
已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.
(1)求证:AD//平面BFC;
(2)求二面角A- DE -F的平面角的大小.
如图:在四棱锥中,底面是正方形,,,点在上,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)证明:在线段上存在点,使∥平面,并求的长.