题目内容

1.已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点($\frac{π}{2}$,-2).
(Ⅰ)求φ的值;
(Ⅱ)若f($\frac{α}{2}$)=$\frac{6}{5}$,-$\frac{π}{2}$<α<0,求sin2α的值.

分析 (Ⅰ)由题意利用条件f(x)的图象过点($\frac{π}{2}$,-2),求得φ的值.
(Ⅱ)若f($\frac{α}{2}$)=$\frac{6}{5}$,-$\frac{π}{2}$<α<0,先求得cosα的值,可得sinα的值,再利用二倍角公式求得sin2α的值.

解答 解:(Ⅰ)∵函数f(x)=2sin(2x+ϕ)(0<ϕ<2π)的图象过点$({\frac{π}{2},-2})$,
所以$f({\frac{π}{2}})=2sin({π+ϕ})=-2$,即sinϕ=1,∵0<ϕ<2π,所以$ϕ=\frac{π}{2}$.                           
(Ⅱ)由(Ⅰ)得,f(x)=2cos2x.∵$f({\frac{α}{2}})=\frac{6}{5}$,∴$cosα=\frac{3}{5}$.       
又因为$-\frac{π}{2}<α<0$,∴$sinα=-\frac{4}{5}$,∴$sin2α=2sinαcosα=-\frac{24}{25}$.

点评 本题主要考查用待定系数法求函数的解析式,同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网