题目内容
设数列
满足a1=1an+1-an=
(n∈N*)
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn.
|
| 1 |
| 2n |
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用“累加求和”和等比数列的前n项和公式即可得出;
(2)bn=nan=2n-
,利用“错位相减法”、等差数列与等比数列的前n项和公式即可得出.
(2)bn=nan=2n-
| n |
| 2n-1 |
解答:
解:(1)当n≥2时,
∴an-a1=
+
+…+
,
∴an=1+
+
+…+
=
=2(1-
),
当n=1时,an=2(1-
)=1,成立,
∴通项an=2(1-
)(n∈N*).
(2)bn=nan=2n-
,
则Sn=b1+b2+…+bn=2(1+2+…+n)-(
+
+
+…+
)
令An=
+
+
+…+
,
则
An=
+
+
+…+
+
,
可?得
An=1+
+
+
+…+
-
=
-
=2-
,
An=4-
,
则Sn=2×
-4+
=n2+n-4+
.
|
∴an-a1=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
∴an=1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
=
1-
| ||
1-
|
| 1 |
| 2n |
当n=1时,an=2(1-
| 1 |
| 2 |
∴通项an=2(1-
| 1 |
| 2n |
(2)bn=nan=2n-
| n |
| 2n-1 |
则Sn=b1+b2+…+bn=2(1+2+…+n)-(
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
令An=
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 21 |
| 2 |
| 22 |
| 3 |
| 23 |
| n-1 |
| 2n-1 |
| n |
| 2n |
可?得
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n |
| 2n |
1-
| ||
1-
|
| n |
| 2n |
| n+2 |
| 2n |
An=4-
| n+2 |
| 2n-1 |
则Sn=2×
| n(1+n) |
| 2 |
| n+2 |
| 2n-1 |
| n+2 |
| 2n-1 |
点评:本题考查了“累加求和”、“错位相减法”、等差数列与等比数列的前n项和公式,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目