题目内容

10.用定义求y=x3-$\frac{1}{x}$的导数.

分析 设函数 y=f(x)在点 x0的某个邻域内有定义,当x在 x0处有变化△x=x-x0,x也在该邻域内)时,相应地函数值变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数 y=f(x)在点 x0处可导,并称这个极限值为函数 y=f(x)在点 x0处的导数记为 f′(x0).

解答 解:△y=(x+△x)3-$\frac{1}{x+△x}$-x3+$\frac{1}{x}$=△x(△x2+3x2+3x△x)+$\frac{△x}{x(x+△x)}$
∴$\frac{△y}{△x}$=△x2+3x2+3x△x+$\frac{1}{x(x+△x)}$,
∴y′=$\underset{lim}{△x→0}$(△x2+3x2+3x△x+$\frac{1}{x(x+△x)}$)=3x2+$\frac{1}{{x}^{2}}$.

点评 本题考查定义法求导数的值,涉及极限的运算,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网