题目内容
1.若函数f(x)=sinωxcosωx在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上是减函数,则ω的取值范围是[-$\frac{3}{2}$,0).分析 由复合函数单调性可得2ω<0且函数的周期不小于2[$\frac{π}{6}$-(-$\frac{π}{6}$)],解不等式可得.
解答 解:f(x)=sinωxcosωx=$\frac{1}{2}$sin2ωx,
∵函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上是减函数,
∴2ω<0且-$\frac{2π}{2ω}$≥2[$\frac{π}{6}$-(-$\frac{π}{6}$)],
解得-$\frac{3}{2}$≤ω<0,即ω∈[-$\frac{3}{2}$,0)
故答案为:[-$\frac{3}{2}$,0)
点评 本题考查二倍角的正弦公式,涉及三角函数的图象和周期性,属基础题.
练习册系列答案
相关题目
12.中华龙鸟是生存于距今约1.4亿年的早白垩世现已灭绝的动物,在一次考古活动中,考古学家发现了中华龙鸟的化石标本共5个,考古学家检查了这5个标本股骨和肱骨的长度,得到如下表的数据:
若由资料可知肱骨长度y与股骨长度x呈线性相关关系.
(1)求y与x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$($\widehat{a}$,$\widehat{b}$精确到0.01);
(2)若某个中华龙鸟的化石只保留有股骨,现测得其长度为37cm,根据(1)的结论推测该中华龙鸟的肱骨长度(精确到1cm).
(参考公式和数据:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{5}$xiyi=19956,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=17486)
| 股骨长度x/cm | 38 | 56 | 59 | 64 | 73 |
| 肱骨长度y/cm | 41 | 63 | 70 | 72 | 84 |
(1)求y与x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$($\widehat{a}$,$\widehat{b}$精确到0.01);
(2)若某个中华龙鸟的化石只保留有股骨,现测得其长度为37cm,根据(1)的结论推测该中华龙鸟的肱骨长度(精确到1cm).
(参考公式和数据:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{5}$xiyi=19956,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=17486)
9.已知函数f(x)=$\left\{\begin{array}{l}{-x^2+4x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若函数g(x)=f(x)-mx有且只有一个零点,则实数m的取值范围是( )
| A. | [1,4] | B. | (-∞,0] | C. | (-∞,4] | D. | (-∞,0]∪[1,4] |
16.函数f(x)的定义域为R.若f(x+1)是奇函数,f(x-1)是偶函数,则( )
| A. | f(x-3)是偶函数 | B. | f(x-4)是偶函数 | C. | f(x)=f(x+4) | D. | f(x+5)是奇函数 |