题目内容
7.设a>0,f(x)=$\frac{2x}{2+x}$,令a1=1,an+1=f(an),n∈N*.(1)写出a2,a3,a4的值,并猜出数列{an}的通项公式;
(2)用数学归纳法证明你的结论.
分析 (1)由题设条件,分别令n=1,2,3,能够求出a2,a3,a4.猜想数列{an}的通项公式
(2)检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
解答 解:(1)由an+1=f(an)=$\frac{2{a}_{n}}{2+{a}_{n}}$,
因为a1=1,所以a2=$\frac{2{a}_{1}}{2+{a}_{1}}$=$\frac{2}{3}$,${a_3}=f({a_2})=\frac{1}{2}$,${a_4}=f({a_3})=\frac{2}{5}$,
猜想${a_n}=\frac{2}{n+1}({n∈{N^*}})$.
(2)证明:①易知,n=1时,猜想正确;
②假设n=k(k∈N*)时,ak=$\frac{2}{k+1}$成立,
则${a_{k+1}}=f({a_k})=\frac{{2×{a_k}}}{{2+{a_k}}}=\frac{2}{k+1+1}$这说明,n=k+1时成立.
由①②知,对于任何n∈N*,都有${a_n}=\frac{2}{n+1}$.
点评 本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.
练习册系列答案
相关题目
7.
为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,并判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望.
下面公式及临界值表仅供参考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)完成下面2×2列联表,并判断是否有90%的把握认为“空间想象能力突出”与性别有关;
| 空间想象能力突出 | 空间想象能力正常 | 合计 | |
| 男生 | |||
| 女生 | |||
| 合计 |
下面公式及临界值表仅供参考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(X2≥k) | 0.100 | 0.050 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
2.若函数$f(x)=\frac{1}{2}{e^x}$与g(x)的图象关于直线y=x对称,P,Q分别是f(x),g(x)上的动点,则|PQ|的最小值为( )
| A. | 1-1n2 | B. | 1+1n2 | C. | $\sqrt{2}(1-1n2)$ | D. | $\sqrt{2}(1+1n2)$ |
12.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递增,则实数t的取值范围是( )
| A. | $(-∞,\frac{51}{8}]$ | B. | (-∞,3] | C. | $[\frac{51}{8},+∞)$ | D. | [3,+∞) |
19.已知f(x)为定义在R行的可导函数,且f(x)<f'(x)对于x∈R恒成立,且e为自然对数的底数,则下面正确的是( )
| A. | f(1)>ef(0),f(2016)>e2016f(0) | B. | f(1)<ef(0),f(2016)>e2016f(0) | ||
| C. | f(1)>ef(0),f(2016)<e2016f(0) | D. | f(1)<ef(0),f(2016)>e2016f(0) |
17.已知$\overrightarrow{a}$、$\overrightarrow{b}$为单位向量,|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{2}$|$\overrightarrow{a}-\overrightarrow{b}$|,则$\overrightarrow{a}$在$\overrightarrow{a}+\overrightarrow{b}$的投影为( )
| A. | $\frac{1}{3}$ | B. | -$\frac{2\sqrt{6}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |