题目内容

16.已知等差数列{an}满足a4-a2=2,且a1,a3,a7成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{{a}_{n}}^{2}-1}$,求数列{bn}的前n项和.

分析 (Ⅰ)公差为d由已知可得:$\left\{\begin{array}{l}{2d=2}\\{{a}_{3}^{2}={a}_{1}{a}_{7}}\end{array}\right.$即$\left\{\begin{array}{l}{d=1}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,解得即可.
(Ⅱ)根据裂项求和法即可求出.

解答 解:(Ⅰ)设公差为d
由已知可得:$\left\{\begin{array}{l}{2d=2}\\{{a}_{3}^{2}={a}_{1}{a}_{7}}\end{array}\right.$即$\left\{\begin{array}{l}{d=1}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$     
解得:a1=2,d=1                         
所以an=n+1                           
(Ⅱ)bn=$\frac{1}{{{a}_{n}}^{2}-1}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)               
所以Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$

点评 本题主要考查等差数列等比数列概念、通项等基础知识,考查运算求解能力,考查化归与转化思想

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网