题目内容

1.已知函数f(x)=$\left\{\begin{array}{l}{2(1-x),0≤x≤1}\\{x-1,1<x≤2}\end{array}\right.$,如果对任意的n∈N,定义fn(x)=$\frac{f\{f[f…f(f)]\}}{n个}$,那么f2016(2)的值为(  )(备注:里层括号内位f(x))
A.3B.2C.1D.0

分析 利用分段函数的性质和函数的周期性求解.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{2(1-x),0≤x≤1}\\{x-1,1<x≤2}\end{array}\right.$,
∴f(2)=2-1=1,
f2(2)=f(1)=0,
f3(2)=f(0)=2,
∵2016=672×3,
∴f2016(2)=f3(2)=2.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质和函数的周期性的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网